Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Sci Pollut Res Int ; 2021 Feb 25.
Article in English | MEDLINE | ID: covidwho-1103506

ABSTRACT

In the current context of the COVID-19 pandemic, researchers are working with health professionals to inform governments on how to formulate health strategies. In this study, we examine the correlation between environmental and climate indicators and COVID-19 outbreak in the top 10 most affected states of the USA. In doing so, PM2.5, temperature, humidity, environmental quality index, and rainfall are included as crucial meteorological and environmental factors. Kendall and Spearman rank correlation coefficients, quantile regression, and log-linear negative binominal analysis are employed as an estimation strategy. The empirical estimates conclude that temperature, humidity, environmental quality index, PM2.5, and rainfall are significant factors related to the COVID-19 pandemic in the top 10 most affected states of the USA. The empirical findings of the current study would serve as key policy input to mitigate the rapid spread of COVID-19 across the USA.

2.
Air Qual Atmos Health ; 13(11): 1385-1394, 2020.
Article in English | MEDLINE | ID: covidwho-691964

ABSTRACT

The impact of environmental pollutants and climate indicators on the outbreak of COVID-19 has gained considerable attention in the recent literature. However, specific investigation of industrial economies like Germany is not available. This provides us motivation to examine the association between environmental pollutants, climate indicators and the COVID-19 cases, recoveries, and deaths in Germany using daily data from February 24, 2020, to July 02, 2020. The correlation analysis and wavelet transform coherence (WTC) approach are the analytical tools, which are used to explore the association between variables included in the study. Our findings indicate that PM2.5, O3, and NO2 have a significant relationship with the outbreak of COVID-19. In addition, temperature is the only significant climate indicator which has significant correlation with the spread of COVID-19. Finally, PM10, humidity, and environmental quality index have a significant relationship only with the active cases from COVID-19 pandemic. Our findings conclude that Germany's successful response to COVID-19 is attributed to environmental legislation and the medical care system, which oversaw significant overhaul after the SARS and MERS outbreaks. The current study implicates that other industrial economies, especially European economies, that are still facing COVID-19 outbreak can follow the German model for pandemic response.

SELECTION OF CITATIONS
SEARCH DETAIL